algorithm - Signal processing (in Java) -
algorithm - Signal processing (in Java) -
i have sensor reading from, code in java, dont think issue language specific, more approach related.
the sensor produces signal high , low pulses, heartbeat. however, "high" pulse not same level, nor "low". interested in relative difference. however, lone not enough, within single "session" high , low values may alter (think curved mid point)
ive included image of 4 "types" of signals able handle. top left "ideal" i'm sure can handle that, other 3 sadly more mutual , less easy handle.
my current approach has been average of data, , see how many times point crossed, tell me how many high , low pulses there were.
i'd know if there simple way of detecting high , low pulse, without using averaging method.
when stated wanted extract frequency of wave first thing thought of fourier transform; converts signal time domain frequency domain. given next sample wave:
this sine way have added noise , trend. underlying sine wave has frequency of 1.5hz
you fourier transform
here can see big response @ 0hz, linear trend , can ignore in case. after can see 1 peak in response @ 1.5hz, frequency of our input signal. in other words; 1 time have fourier transform result info point largest value (after remove low frequency results)
java codeapachi commons has fast fourier transform class used create transformation. takes input sampled info wave , outputs complex number, modulus of complex number (the square root of real part squared plus imaginary part squared) equal energy @ frequency. each entry i
in outputted array referes frequency @ i*samplingfrequency/noofsamples
.
however java code below largly deals these issues you. issue fast fourier transform number of input entries must powerfulness of 2.
import org.apache.commons.math3.complex.complex; import org.apache.commons.math3.transform.dftnormalization; import org.apache.commons.math3.transform.fastfouriertransformer; import org.apache.commons.math3.transform.transformtype; public class fouriertest { public static void main(string[] args) { double samplingfrequency=10; //hz, know info , need set here double[] frequencydomain = new double[input.length]; fastfouriertransformer transformer = new fastfouriertransformer(dftnormalization.standard); seek { complex[] complex = transformer.transform(input, transformtype.forward); (int = 0; < complex.length; i++) { double real = (complex[i].getreal()); double imaginary = (complex[i].getimaginary()); frequencydomain[i] = math.sqrt((real * real) + (imaginary * imaginary)); } } grab (illegalargumentexception e) { system.out.println(e); } //only frequencydomain.length/2 since sec half mirror image or first half for(int i=0;i<frequencydomain.length/2;i++){ double frequency=samplingfrequency*i/frequencydomain.length; system.out.println("frequency: " + frequency + "\t\tenergycomponent: " + frequencydomain[i]); } } static double[] input = new double[]{ 0.017077407 , //sample @ 0 seconds 1.611895528 , //sample @ 0.1 seconds 2.063967663 , //sample @ 0.2 seconds 1.598492541 , //etc 0.184678933 , 0.02654732 , 0.165869218 , 1.026139745 , 1.914179294 , 2.523684208 , 1.71795312 , 0.932131202 , 1.097366772 , 1.107912105 , 2.843777623 , 2.503608192 , 2.540595787 , 2.048111122 , 1.515498608 , 1.828077941 , 2.400006658 , 3.562953532 , 3.34333491 , 2.620231348 , 2.769874641 , 2.423059324 , 2.11147835 , 3.473525478 , 4.504105599 , 4.325642774 , 3.963498242 , 2.842688545 , 2.573038184 , 3.434226007 , 4.924115479 , 4.876122332 , 4.553580015 , 3.92554604 , 3.804585546 , 3.476610932 , 4.535171252 , 5.398007229 , 5.729933758 , 5.573444511 , 4.487695977 , 4.133046459 , 4.796637209 , 5.091399617 , 6.420441446 , 6.473462022 , 5.663322311 , 4.866446009 , 4.840966187 , 5.329697081 , 6.746910181 , 6.580067494 , 7.140083322 , 6.243532245 , 4.960520462 , 5.100901901 , 6.794495306 , 6.959324497 , 7.194674358 , 7.035874424 }; }
java algorithm signals
Comments
Post a Comment